
Лекция 11. Условная логика. Выражение case

В определенных ситуациях может потребоваться, чтобы SQL-

выражения вели себя так или иначе в зависимости от значений определенных

столбцов или выражений. Условная логика дает возможность выбирать одно

из направлений выполнения программы.

Выражение case

Все основные серверы БД включают встроенные функции,

имитирующие выражение if_then_else, которое есть в большинстве языков

программирования (например, функция decode() Oracle, функция if() MySQL

и функция coalesce() SQL Server). Выражения case тоже разработаны для

поддержки логики if_then_else, но в сравнении со встроенными функциями

обладают двумя преимуществами:

▪ Выражение case является частью стандарта SQL (версия SQL92) и

реализовано в Oracle Database, SQL Server и MySQL.

▪ Выражения case встроены в грамматику SQL и могут быть включены в

выражения select, insert, update и delete.

Далее будут представлены выражения case двух разных типов.

Выражения case с перебором вариантов

Синтаксис данного выражения:

CASE

WHEN C1 THEN E1

WHEN C2 THEN E2

...

WHEN CN THEN EN

[ELSE ED]

END

В этом описании C1, C2, …, CN обозначают условия, а E1, E2, …, EN –

выражения, которые должны быть возвращены выражением case. Если

условие в блоке when выполняется, выражение case возвращает

соответствующее выражение. Кроме того, символ ED представляет

применяемое по умолчанию выражение, возвращаемое выражением case, если

не выполнено ни одно из условий C1, C2, …, CN (блок else является

необязательным, поэтому он заключен в квадратные скобки). Все выражения,

возвращаемые различными блоками when, должны обеспечивать результаты

одного типа (например, date, number, varchar).

Выражение по умолчанию

Рассмотрим пример выражения case с перебором вариантов (searched

case):

SELECT title,

CASE

 WHEN employee.title = 'Head Teller'

 THEN 'Head Teller'

 WHEN employee.title = 'Teller'

 AND YEAR(employee.start_date) > 2007

 THEN 'Teller Trainee'

 WHEN employee.title = 'Teller'

 AND YEAR(employee.start_date) < 2006

 THEN 'Experienced Teller'

 WHEN employee.title = 'Teller'

 THEN 'Teller'

 ELSE 'Non-Teller'

END qualification

FROM employee;

При вычислении выражения case блоки when обрабатываются сверху

вниз. Как только одно из условий блока when принимает значение true,

возвращается соответствующее выражение, а все остальные блоки when

игнорируются. Если ни одно из условий блока when не выполняется,

возвращается выражение блока else.

Хотя предыдущий пример возвращает строковые выражения, помните,

что выражения case могут возвращать выражения любого типа, включая

подзапросы.

Простые выражения case

Простое выражение case (simple case expression) очень похоже на

выражение case с перебором вариантов, но несколько менее функционально.

Cинтаксис:

CASE V0

WHEN V1 THEN E1

WHEN V2 THEN E2

...

WHEN VN THEN EN

[ELSE ED]

END

Выражение по умолчанию

В этом описании V0 представляет значение, а символы V1, V2, …, VN –

значения, сравниваемые с V0. Символы E1, E2, …, EN представляют

выражения, возвращаемые выражением case, а ED – выражение, которое

должно быть возвращено, если ни одно из значений набора V1, V2, …, VN не

соответствует значению V0.

Вот пример простого выражения case:

SELECT cust_type_cd,

CASE customer.cust_type_cd

 WHEN 'I' THEN

 (SELECT CONCAT(i.first_name, ' ', i.last_name)

 FROM individual i

 WHERE i.cust_id = customer.cust_id)

 WHEN 'B' THEN

 (SELECT b.name

 FROM business b

 WHERE b.cust_id = customer.cust_id)

 ELSE 'Unknown Customer Type'

END customer_name

FROM customer;

Простые выражения case менее функциональны, чем выражения case с

перебором вариантов, потому что в них нельзя задать собственные условия; в

них просто используются условия равенства. Ниже показана аналогичная

логика, использующая выражение case с перебором вариантов:

SELECT cust_type_cd,

CASE

 WHEN customer.cust_type_cd = 'I' THEN

 (SELECT CONCAT(i.first_name, ' ', i.last_name)

 FROM individual I

 WHERE i.cust_id = customer.cust_id)

 WHEN customer.cust_type_cd = 'B' THEN

 (SELECT b.name FROM business b

 WHERE b.cust_id = customer.cust_id)

 ELSE 'Unknown Customer Type'

END customer_name

FROM customer;

Выражения case с перебором вариантов позволяют создавать условия

вхождения в диапазон, условия неравенства и составные условия,

использующие and/or/not, поэтому рекомендуется применять выражения case

с перебором вариантов во всех случаях, кроме самых простых.

Ошибки деления на ноль

Проводя вычисления, включающие деление, нужно все время заботиться

о том, чтобы знаменатель никогда не был равен нулю. Некоторые серверы БД,

такие как Oracle Database, встретив нулевой знаменатель, формируют ошибку,

а MySQL просто присваивает результату вычисления значение null, как

показывает следующий пример:

mysql> SELECT 100 / 0;
+-----------+
| 100 / 0 |
+-----------+
| NULL |
+-----------+
1 row in set (0.00 sec)

Чтобы защитить вычисления от ошибок или, еще хуже, от загадочного

получения null, следует ко всем знаменателям применять условную логику.

Рассмотрим запрос, который вычисляет отношение остатка на счете к

общему остатку для всех счетов одного типа. Поскольку для некоторых типов

счетов, таких как ссуды коммерческим предприятиям, общий остаток может

равняться нулю, если на текущий момент все ссуды полностью выплачены,

лучше всего включить выражение case, гарантирующее, что знаменатель

никогда не будет равен нулю.

SELECT a.cust_id, a.product_cd, a.avail_balance /

CASE

 WHEN prod_tots.tot_balance = 0 THEN 1

 ELSE prod_tots.tot_balance

END percent_of_total

FROM account a INNER JOIN

 (SELECT a.product_cd, SUM(a.avail_balance) tot_balance

FROM account a

GROUP BY a.product_cd) prod_tots

ON a.product_cd = prod_tots.product_cd;

Обработка значений Null

Хотя значения null удобны для хранения в таблицах неизвестных

значений столбцов, они не всегда подходят для отображения или

использования в выражениях. Например, в окне ввода данных вы, скорее

всего, предпочтете отображать слово «unknown», а не оставлять пустое поле.

При извлечении данных выражение case позволяет вместо значения null

подставлять строку:

SELECT emp_id, fname, lname,

 CASE

 WHEN title IS NULL THEN 'Unknown'

 ELSE title

 END

FROM employee;

Значения null в вычислениях часто являются причиной результата null,

как показывает следующий пример:

mysql> SELECT (7 * 5) / ((3 + 14) * null);

+----------------------------------+
| (7 * 5) / ((3 + 14) * null) |
+----------------------------------+
| NULL |
+----------------------------------+
1 row in set (0.08 sec)

Проводя вычисления, полезно преобразовать значения null в число

(обычно 0 или 1) с помощью выражения case, чтобы обеспечить результат

вычисления, отличный от null.

Также условная логика часто применяется при обновлении или

удалении данных таблиц.

Литература

1. Алан Бьюли. Изучаем SQL: пер. с англ. – СПб-М.: Символ, O’Reilly, 2007.

– 310 с.

2. Alan Beaulieu. Learning SQL. 2nd Edition. – O’Reilly Media, 2009. – 337 p.

